Programme scientifique

Cours 1: Le théorème des fonctions implicites, ses récentes variantes sans différentiable au sens classique, et leurs applications, Pr. Guy DEGLA, Institut de Mathématiques et de Sciences Physiques (IMSP), Université d’Abomey-Calavi, Bénin

Résumé : Le but de ce cours est de revisiter le Théorème des Fonctions Implicites et le Théorème d’inversion locale dans le cas classique et de mettre aussi en lumière l’existence de fonctions implicites en absence, plus ou moins, de différentiabilité au sens de Fréchet, mais en faisant recours à la monotonie généralisée, la sous-différentiabilité ou la différentiabilité au sens de Clarke. De plus nous donnerons quelques illustrations aussi bien en théorie (Géométrie, Équations aux Dérivées Partielles, Théorie de la Bifurcation, optimisation,…) qu’en pratique (Économie, Physique, …)

Cours 2: Méthodes variationnelles et topologiques en Équations aux Dérivées Partielles elliptique,  Pr. Mabel CUESTA,  Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville (LMPA), Université du Littoral Côte d’Opale, France

Résumé :

1. Problèmes elliptiques linéaires: Propriété de la moyenne, principe du maximum faible. Formule de représentation de Green. Problème de Dirichlet sur une boule, sur un ouvert. Solutions faibles du problème de Dirichlet, de Neumann. L’approche hilbertienne: Théorème de Lax-Milgram. Valeurs propres et alternative de Fredholm. Principe de Dirichlet, calcul de variations. 

2. Théorèmes de point fixe et applications aux problèmes elliptiques non-linéaires: Théorème du point fixe de Schauder. Théorème du point fixe de Schaefer. Applications aux problèmes elliptiques sous-linéaires. Le problème de Dirichlet pour une classe d’équations de second ordre super-linéaires .

3. Méthodes variationnelles et introduction à la théorie des points critiques: Dérivée au sens de Gâteaux et de Fréchet d’une fonctionnelle. Coercivité, condition de Palais-Smale. Points critiques, points critiques sous contrainte. Théorème du “pas de la montagne ” d’Ambrosetti-Rabinowitz .

Cours 3: Transport optimal et Équations aux Dérivées Partielles (EDP), Pr. Diaraf SECK, Université Cheikh Anta Diop (UCAD), Sénégal 

Résumé: Dans ce cours il s’agit dans un premier temps d’introduire la théorie du transport optimal. Pour le problème de Monge, l’application transport optimal n’existant pas toujours, nous donnerons, dans un premier temps, des cas de figure simples avant de passer au problème relaxé qui est le problème de Kantorovich. Ensuite, sous certaines hypothèses, nous montrerons des résultats d’existence. Cette partie sera suivie de quelques exemples pour étudier l’existence de solution d’EDP à partir du transport de masse. Quelques résultats de régularité seront introduits.

Cours 4: Bifurcation theory, a nonlinear analysis method,  Rosa Maria PARDO,  Universad Completense Madrid, Spain

Objectives. The objective of the course is to introduce to the students to a basic tool of Nonlinear Functional Analysis, the local theory of bifurcation which provides local branch results. Such techniques are applicable to a wide class of mathematical systems, modelling real phenomena. We will illustrate these techniques, on several models of Partial Differential Equations.

Programme

(1) Introduction to Bifurcation Theory.
(2) The Implicit Function Theorem. Linearizations. No degeneration and local continuation.
(3) Bifuracated branch from simple eigenvalues. Theorem of Crandall and Rabinowitz. The principle of stability exchange. Rabinowitz’s global Theorem.
(4) Applications to the study of existence of solutions for nonlinear Partial Differential Equations.

Cours 5: Simulations basées sur des agents pour la modélisation des populations, Christoph THRON, Texas University, USA

Résumé : Les capacités de traitement des ordinateurs modernes ont permis de mettre au point de nouvelles techniques de modélisation mathématique qui étaient jusqu’alors impossibles à réaliser. L’une des plus importantes de ces nouvelles techniques est la modélisation à base d’agents. Auparavant, les modèles de populations reposaient sur des fonctions continues qui caractérisent les propriétés globales de la population et qui satisfaisaient des équations différentielles (telles que les équations de Lotka-Volterra). En revanche, dans la modélisation basée sur les agents, le comportement interactif de chaque individu (ou “agent”) est pris en compte. Les ordinateurs de bureau ou portables  sont désormais capables de gérer des modèles basés sur des agents comportant des dizaines de milliers d’agents. Une application importante des modèles basés sur les agents est l’épidémiologie, c’est-à-dire la propagation des maladies contagieuses.

Ce cours comprendra une introduction à la méthodologie générale de la modélisation à base d’agents, une présentation d’un exemple de modèle à base d’agents de la propagation d’une maladie au sein d’une communauté, et une discussion des limites et des perspectives futures de la modélisation à base d’agents en épidémiologie, ainsi que dans les sciences sociales.